Alireza Makhzani
Home Group Publications
  • Random cycle coding: lossless compression of cluster assignments via bits-back coding
    Daniel Severo, Ashish Khisti, Alireza Makhzani
    NeurIPS, 2024
  • Probabilistic inference in language models via twisted sequential Monte Carlo
    Stephen Zhao*, Rob Brekelmans*, Alireza Makhzani**, Roger Grosse**
    ICML, 2024, (Best Paper Award)
  • Can we remove the square-root in adaptive gradient methods? a second-order perspective
    Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard Turner, Alireza Makhzani
    ICML, 2024
  • Structured inverse-free natural gradient: memory-efficient & numerically-stable KFAC for large neural nets
    Wu Lin*, Felix Dangel*, Runa Eschenhagen, Kirill Neklyudov, Agustinus Kristiadi, Richard Turner, Alireza Makhzani
    ICML, 2024, Also presented in NeurIPS Workshop on Optimization for Machine Learning, 2023
  • A computational framework for solving Wasserstein Lagrangian flows
    Kirill Neklyudov*, Rob Brekelmans*, Alexander Tong, Lazar Atanackovic, Qiang Liu, Alireza Makhzani
    ICML, 2024, Also presented in NeurIPS Workshop on Optimal Transport and Machine Learning, 2023
  • Wasserstein quantum Monte Carlo: a novel approach for solving the quantum many-body Schrödinger equation
    Kirill Neklyudov, Jannes Nys, Luca Thiede, Juan Carrasquilla, Qiang Liu, Max Welling, Alireza Makhzani
    NeurIPS, 2023, (Spotlight)
  • Action matching: learning stochastic dynamics from samples
    Kirill Neklyudov, Rob Brekelmans, Daniel Severo, Alireza Makhzani
    ICML, 2023
  • Random edge coding: one-shot bits-back coding of large labeled graphs
    Daniel Severo, James Townsend, Ashish Khisti, Alireza Makhzani
    ICML, 2023
  • Compressing multisets with large alphabets using bits-back coding
    Daniel Severo, James Townsend, Ashish Khisti, Alireza Makhzani, Karen Ullrich
    IEEE Journal on Selected Areas in Information Theory, Special Issue on Modern Compression, 2023, Also presented in Data Compression Conference, 2021, (Oral Talk)
  • Quantum hypernetworks: training binary neural networks in quantum superposition
    Juan Carrasquilla, Mohamed Hibat-Allah, Estelle Inack, Alireza Makhzani, Kirill Neklyudov, Graham Taylor, Giacomo Torlai
    arXiv:2301.08292 (Submitted to Quantum), 2023
  • Improving mutual information estimation with annealed and energy-based bounds
    Rob Brekelmans*, Sicong Huang*, Marzyeh Ghassemi, Greg Ver, Roger Grosse, Alireza Makhzani
    ICLR, 2022
  • Variational model inversion attacks
    Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani
    NeurIPS, 2021
  • Your dataset is a multiset and you should compress it like one
    Daniel Severo, James Townsend, Ashish Khisti, Alireza Makhzani, Karen Ullrich
    NeurIPS Workshop on Deep Generative Models and Downstream Applications, 2021, (Best Paper Award)
  • Few shot image generation via implicit autoencoding of support sets
    Andy Huang, Kuan-Chieh Wang, Guillaume Rabusseau, Alireza Makhzani
    NeurIPS Workshop on Meta-Learning, 2021
  • Improving lossless compression rates via Monte Carlo bits-back coding
    Yangjun Ruan*, Karen Ullrich*, Daniel Severo*, James Townsend, Ashish Khisti, Arnaud Doucet, Alireza Makhzani, Chris Maddison
    ICML, 2021, (Long Oral Talk)
  • Likelihood ratio exponential families
    Rob Brekelmans, Frank Nielsen, Alireza Makhzani, Aram Galstyan, Greg Steeg
    NeurIPS Workshop on Deep Learning through Information Geometry, 2020
  • Evaluating lossy compression rates of deep generative models
    Sicong Huang*, Alireza Makhzani*, Yanshuai Cao, Roger Grosse
    ICML, 2020, Also presented in NeurIPS Workshop on Bayesian Deep Learning, 2019, (Contributed Talk)
  • Implicit autoencoders
    Alireza Makhzani
    arXiv:1805.09804, 2018
  • Unsupervised representation learning with autoencoders
    Alireza Makhzani
    PhD Thesis, University of Toronto (Canada), 2018
  • Starcraft II: a new challenge for reinforcement learning
    Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, others
    arXiv:1708.04782, 2017
  • Pixelgan autoencoders
    Alireza Makhzani, Brendan Frey
    NeurIPS, 2017
  • Adversarial autoencoders
    Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, Brendan Frey
    ICLR Workshop, 2016
  • Winner-take-all autoencoders
    Alireza Makhzani, Brendan Frey
    NeurIPS, 2015
  • K-sparse autoencoders
    Alireza Makhzani, Brendan Frey
    ICLR, 2014
  • Compressed sensing for jointly sparse signals
    Alireza Makhzani
    Masters Thesis, University of Toronto (Canada), 2012
  • Distributed spectrum sensing in cognitive radios via graphical models
    Alireza Makhzani, Shahrokh Valaee
    5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2013
  • Reconstruction of jointly sparse signals using iterative hard thresholding
    Alireza Makhzani, Shahrokh Valaee
    IEEE International Conference on Communications (ICC), 2012
  • Reconstruction of a generalized joint sparsity model using principal component analysis
    Alireza Makhzani, Shahrokh Valaee
    IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011
  • Alireza Makhzani
  • Vector Institute
  • University of Toronto
  • Twitter
  • image/svg+xml Google Scholar