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Objectives

• Winner-Take-All autoencoders use a sparsity enforcing
operator and backpropagation to learn sparse hierar-
chical feature maps.

• WTA autoencoders achieve competitive error rate for
unsupervised MNIST (0.48% error), and perform bet-
ter than several complicated models on SVHN and
CIFAR-10.

• WTA autoencoders are faster than EM-like algorithms
(convolutional PSD, deconvnets) and contrastive diver-
gence (convolutional RBM).

Fully-Connected WTA Autoencoders

Training:
After performing the feed-
forward phase, keep the k%
largest activations within
the mini-batch and set the
rest to zero.
Sparse Encoding:
Turn off the sparsity and
compute the features using
ReLU activation function.

Figure 1: MNIST filters with sparsity (a) 10% (b) 5% (c) 2%.

Figure 2: Learnt dictionary of (a) Toronto face dataset (b)
CIFAR-10.

Winner-Take-All RBMs

In the positive phase of the contrastive divergence, we first
keep the k% largest P (hi|v) for each hi across the mini-
batch dimension and set the rest to zero, and then sample hi

according to the sparsified P (hi|v).

Figure 3: (a) Standard RBM (b) WTA-RBM (sparsity of 30%)

Convolutional Autoencoders

Figure 4: (a) Filters and feature maps of a denoising/dropout
convolutional autoencoder. (b) Proposed architecture.

Convolutional WTA Autoencoders

Training (unsupervised):
After performing the feedforward phase, find the largest acti-
vation within each feature map and set the rest of the hidden
units in that feature map to zero. Then compute the output
and the error using the sparsified maps and backpropagate
the error only through the largest activations.
Sparse Encoding:
Turn off the sparsity constraint and compute the features
using the ReLU activation function. Pool the maps using
overlapping max-pooling to find the final representation.
Deep Winner-Take-All Autoencoders:
Train a WTA autoencoder and find the first layer feature
maps as explained above. Fix the feature maps and train
another WTA autoencoder to obtain the deep feature maps.

Dictionary Visualization
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Figure 5: The CONV-WTA autoencoder with 16 first layer fil-
ters and 128 second layer filters trained on MNIST: (a) Input
image. (b) Learnt dictionary. (c) 16 feature maps while training.
(d) 16 feature maps after sparsity turned off. (e) 16 feature maps
of the first layer after max-pooling. (f) final representation.

Figure 6: MNIST: (a) Only spatial sparsity (b) Spatial + lifetime
sparsity 20% (c) Spatial + lifetime sparsity 5%

Figure 7: Toronto Face Dataset: (a) Only spatial sparsity (b)
Spatial + lifetime sparsity 10%

Figure 8: ImageNet: (a) Only spatial sparsity (b) Spatial +
lifetime sparsity 10%

Figure 9: Street View House Numbers.

Classification Results

We evaluate the quality of unsupervised features of WTA
autoencoders by training a naive linear classifier (i.e., SVM)
on top them with no fine-tuning.

Error
Deep Deconvolutional Network 0.84%
Convolutional Deep Belief Network 0.82%
Scattering Convolution Network 0.43%
Convolutional Kernel Network 0.39%
CONV-WTA Autoencoder, 16 maps 1.02%
CONV-WTA Autoencoder, 128 maps 0.64%
Stacked CONV-WTA, 128 & 2048 maps 0.48%

Table 1: MNIST: Unsupervised convolutional features + SVM

N Convnet CKN Scattering Net CONV-WTA

300 7.18% 4.15% 4.70% 3.47%
600 5.28% - - 2.37%
1K 3.21% 2.05% 2.30% 1.92%
2K 2.53% 1.51% 1.30% 1.45%
5K 1.52% 1.21% 1.03% 1.07%
10K 0.85% 0.88% 0.88 % 0.91%
60K 0.53% 0.39% 0.43% 0.48%

Table 2: Semi-Supervised MNIST: Unsupervised features +
SVM trained on N labels.

Accuracy
Convolutional Triangle k -means 90.6%
CONV-WTA Autoencoder 88.5%
Stacked CONV-WTA Autoencoder 93.1%
Deep VAE (non-convolutional, N=1000) 63.9%
Stacked CONV-WTA Autoencoder 76.2%

Table 3: Unsupervised and Semi-Supervised SVHN
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